Ingredients of concrete
A. Cement: cement is a binding material used in the masonry.
Physical Properties of Cement
Different blends of cement used in construction are characterized by their physical properties.
Some key parameters control the quality of cement. The physical properties of good cement
are based on:
Fineness of cement
Soundness
Consistency
Strength
Setting time
Heat of hydration
Loss of ignition
Bulk density
Specific gravity (Relative density)


These physical properties are discussed in details in the following segment. Also, you will find
the test names associated with these physical properties.
1. Fineness of Cement
The size of the particles of the cement is its fineness. The required fineness of good cement is
achieved through grinding the clinker in the last step of cement production process. As
hydration rate of cement is directly related to the cement particle size, fineness of cement is
very important.


2. Soundness of Cement
refers to the ability of cement to not shrink upon hardening. Good quality cement retains its
volume after setting without delayed expansion, which is caused by excessive free lime and
magnesia.

Tests: Unsoundness of cement may appear after several years, so tests for ensuring soundness must be able to
determine that potential.
2.1 Le Chatelier Test
This method, done by using Le Chatelier Apparatus, tests the expansion of cement due to lime. Cement
paste (normal consistency) is taken between glass slides and submerged in water for 24 hours at 20+1°C.
It is taken out to measure the distance between the indicators and then returned under water, brought
to boil in 25-30 mins and boiled for an hour. After cooling the device, the distance between indicator
points is measured again. In a good quality cement, the distance should not exceed 10 mm.


3. Consistency of Cement
The ability of cement paste to flow is consistency.
It is measured by Vicat Test.
In Vicat Test Cement paste of normal consistency is taken in the Vicat Apparatus. The plunger of the
apparatus is brought down to touch the top surface of the cement. The plunger will penetrate the
cement up to a certain depth depending on the consistency. A cement is said to have a normal
consistency when the plunger penetrates 10±1 mm.


4. Strength of cement
Three types of strength of cement are measured – compressive, tensile and flexural. Various factors
affect the strength, such as water-cement ratio, cement-fine aggregate ratio, curing conditions, size and
shape of a specimen, the manner of molding and mixing, loading conditions and age. While testing the
strength, the following should be considered:
Cement mortar strength and cement concrete strength are not directly related. Cement strength
is merely a quality control measure.
The tests of strength are performed on cement mortar mix, not on cement paste.
Cement gains strength over time, so the specific time of performing the test should be
mentioned.

5. Compressive Strength
It is the most common strength test. A test specimen (50mm) is taken and subjected to a compressive
load until failure. The loading sequence must be within 20 seconds and 80 seconds.
Tensile strength
Though this test used to be common during the early years of cement production, now it does not offer any useful
information about the properties of cement.
Flexural strength
This is actually a measure of tensile strength in bending. The test is performed in a 40 x40 x 160 mm
cement mortar beam, which is loaded at its center point until failure.
Standard test: ASTM C 348: Flexural Strength of Hydraulic Cement Mortars


6. Setting Time of Cement
Cement sets and hardens when water is added. This setting time can vary depending on multiple
factors, such as fineness of cement, cement-water ratio, chemical content, and admixtures. Cement
used in construction should have an initial setting time that is not too low and a final setting time not
too high. Hence, two setting times are measured:
Initial set: When the paste begins to stiffen noticeably (typically occurs within 30-45 minutes) Final set: When
the cement hardens, being able to sustain some load (occurs below 10 hours) Again, setting time can also be an
indicator of hydration rate.

Standard Tests:
AASHTO T 131 and ASTM C 191: Time of Setting of Hydraulic Cement by Vicat Needle AASHTO T 154: Time of Setting of
Hydraulic Cement by Gillmore Needles
ASTM C 266: Time of Setting of Hydraulic-Cement Paste by Gillmore Needles

7. Heat of Hydration
When water is added to cement, the reaction that takes place is called hydration. Hydration generates
heat, which can affect the quality of the cement and also be beneficial in maintaining curing
temperature during cold weather. On the other hand, when heat generation is high, especially in large
structures, it may cause undesired stress. The heat of hydration is affected most by C3S and C3A present
in cement, and also by water-cement ratio, fineness and curing temperature. The heat of hydration of
Portland cement is calculated by determining the difference between the dry and the partially hydrated
cement (obtained by comparing these at 7th and 28th days).
Standard Test: ASTM C 186: Heat of Hydration of Hydraulic Cement


8. Loss of Ignition
Heating a cement sample at 900 - 1000°C (that is, until a constant weight is obtained) causes weight
loss. This loss of weight upon heating is calculated as loss of ignition. Improper and
prolonged storage or adulteration during transport or transfer may lead to pre-hydration and
carbonation, both of which might be indicated by increased loss of ignition.
Standard Test: AASHTO T 105 and ASTM C 114: Chemical Analysis of Hydraulic Cement


9. Bulk density
When cement is mixed with water, the water replaces areas where there would normally be air. Because
of that, the bulk density of cement is not very important. Cement has a varying range of density
depending on the cement composition percentage. The density of cement may be anywhere from 62 to
78 pounds per cubic foot.


10. Specific Gravity (Relative Density)
Specific gravity is generally used in mixture proportioning calculations. Portland cement has a specific
gravity of 3.15, but other types of cement (for example, portland-blast-furnace-slag and portlandpozzolan
cement) may have specific gravities of about 2.90.
Standard Test: AASHTO T 133 and ASTM C 188: Density of Hydraulic Cement

B. Chemical Properties of Cement
The raw materials for cement production are limestone (calcium), sand or clay (silicon), bauxite
(aluminum) and iron ore, and may include shells, chalk, marl, shale, clay, blast furnace slag, slate.
Chemical analysis of cement raw materials provides insight into the chemical properties of cement.
1 Tricalcium aluminate (C3A)
Low content of C3A makes the cement sulfate-resistant. Gypsum reduces the hydration of C3A, which
liberates a lot of heat in the early stages of hydration. C3A does not provide any more than a little
amount of strength.
Type I cement: contains up to 3.5% SO3 (in cement having more than 8% C3A) Type II
cement: contains up to 3% SO3 (in cement having less than 8% C3A)
2. Tricalcium silicate (C3S)
C3S causes rapid hydration as well as hardening and is responsible for the cement’s early
strength gain an initial setting.
3. Dicalcium silicate (C2S)
As opposed to tricalcium silicate, which helps early strength gain, dicalcium silicate in cement helps
the strength gain after one week.
4. Ferrite (C4AF)
Ferrite is a fluxing agent. It reduces the melting temperature of the raw materials in the kiln from
3,000°F to 2,600°F. Though it hydrates rapidly, it does not contribute much to the strength of the
cement.
5. Magnesia (MgO)
The manufacturing process of Portland cement uses magnesia as a raw material in dry process plants.
An excess amount of magnesia may make the cement unsound and expansive, but a little amount of it
can add strength to the cement. Production of MgO-based cement also causes less CO2 emission. All
cement is limited to a content of 6% MgO.
6. Sulphur trioxide
Sulfur trioxide in excess amount can make cement unsound.

Aside from adding strength and hardness, iron oxide or ferric oxide is mainly responsible for the color of
the cement.
8. Alkalis
The amounts of potassium oxide (K2O) and sodium oxide (Na2O) determine the alkali content of the
cement. Cement containing large amounts of alkali can cause some difficulty in regulating the setting
time of cement. Low alkali cement, when used with calcium chloride in concrete, can cause
discoloration. In slag-lime cement, ground granulated blast furnace slag is not hydraulic on its own but
is "activated" by addition of alkalis. There is an optional limit in total alkali content of 0.60%,
calculated by the equation Na2O + 0.658 K2O.
9. Free lime
Free lime, which is sometimes present in cement, may cause expansion.
10. Silica fumes
Silica fume is added to cement concrete in order to improve a variety of properties, especially
compressive strength, abrasion resistance and bond strength. Though setting time is prolonged by the
addition of silica fume, it can grant exceptionally high strength. Hence, Portland cement containing 5-
20% silica fume is usually produced for Portland cement projects that require high strength.
11. 11.
Cement containing high alumina has the ability to withstand frigid temperatures since alumina is
chemical-resistant. It also quickens the setting but weakens the cement.


What is an Aggregate?
Aggregates are the important constituents of the concrete which give body to the concrete and also
reduce shrinkage. Aggregates occupy 70 to 80 % of total volume of concrete. So, we can say that one
should know definitely about the aggregates in depth to study more about concrete.
Classification of Aggregates as per Size and Shape
Aggregates are classified based on so many considerations, but here we are going to discuss about
their shape and size classifications in detail.
Classification of Aggregates Based on Shape
We know that aggregate is derived from naturally occurring rocks by blasting or crushing etc., so,
it is difficult to attain required shape of aggregate. But, the shape of aggregate will affect the
workability of concrete. So, we should take care about the shape of aggregate. This care is not
only applicable to parent rock but also to the crushing machine used.

Last modified: Thursday, 23 May 2024, 3:36 PM